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Abstract

This discussion offers an overview of some formally accepted methodology in the USA for the determination of organic
volatile impurities in pharmaceuticals. Particular advantages of equilibrinm headspace sampling with capillary gas
chromatography for this task are outlined and,some important considerations are expressed. Specific adaptations which we
have made for forensic applications are described along with mention of select applications within the context of the
detection of the counterfeiting of bulk pharmaceuticals. Finally, a brief description is provided of statistical techniques which
can be used to effectively manipulate multivariate data sets for purposes of distinguishing between the manufacturers of a
product based upon impurity profiles.
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1. Introduction

It has been estimated that in excess of 70% of the
bulk drugs that are used in the United States are
imported. The Food and Drug Administration ap-
proves these products using the same guidelines that
are followed in approving domestic manufacturers.
Unfortunately, there have been incidents in which
material manufactured by an unapproved source has
been disguised as that of an approved source. This
act of counterfeiting is of concern for reasons of
health and safety as well as economic fraud.

As a forensic laboratory, we are interested in
identifying and assessing trace impurities in bulk
pharmaceuticals with a view towards using profiles
of these contaminants as a ‘‘fingerprint” of the
manufacturer. Once material from a variety of legiti-
mate producers has been examined, this information
often provides a means of ascertaining the probable
source of a given material. In other circumstances,
the comparison of samples can provide evidence that
a pharmaceutical under investigation was not manu-
factured by the producer-of-record. In either case,
impurity profiles are a valuable tool for detecting
“counterfeit” drugs or illicit substitutions and track-
ing down their source.

There are a variety of publications in the open
literature concerning the determination of impurities
in bulk drugs for forensic purposes. Most often, these
involve drugs-of-abuse where there is interest in
determining the manufacturing process or in demon-
strating that samples have a common origin. A few
recent examples include the following. Capillary gas
chromatography was used to develop impurity pro-
files of methamphetamine seized in Australia during
a 2-year period. Sophisticated statistical analysis was
used to draw conclusions concerning the mode of
synthesis and/or the origin of these samples and this
has been developed into a national drugs database
[1]. A similar approach has been applied to heroin in
Germany {2]. In addition to high-performance liquid
chromatography and capillary gas chromatography,
workers in our laboratory have employed more non-
traditional techniques such as ion chromatography
[3], capillary electrophoresis [4] and elemental anal-
ysis [5] to the same end.

The determination of residual solvents and other
organic volatile impurities (OVIs) can make a sig-
nificant contribution to this process. A recent article

[6] has demonstrated the usefulness of equilibrium
(or static) headspace analysis combined with gas
chromatography-mass spectrometry (SHS-GC-MS)
to detect and determine volatile impurities as a
means of characterizing illicit heroin and cocaine
samples.

2. Official analytical methods (USA) for organic
volatile impurities

Although extensive work on the determination of
residual solvents in pharmaceuticals and related
substances (e.g. [7-10]) has been conducted in
Europe and elsewhere, the focus of this section is on
the genesis of officially accepted methods for the
determination of OVIs in the USA.

After extensive discussions initiated in the mid-
1980’s, the evaluation of OVIs was formally recog-
nized as an important element in the control of the
quality of pharmaceuticals by the proposed intro-
duction of a general chapter in the United States
Pharmacopeia [11]. This chapter consisted of three
analytical methods. Two of these (Method II and
Method III} stipulated the analysis of 5 ml of a 1%
(w/v) aqueous solution of the drug by dynamic
headspace (i.e. purge and trap) procedures already in
use by the USEPA: USEPA Test Method Purgeable
Hydrocarbons - Method 601, and USEPA Test
Method Purgeables - Method 624. In contrast, Meth-
od I proposed direct analysis of a 1% (w/v) solution
of the drug in benzyl alcohol on a special column
which consisted of serial sections of polydi-
methylsiloxane on acid-washed siliceous earth and
polyethylene glycol on Carbopak B [12]. Sub-
sequently, tolerances were recommended for six OVI.
residues: benzene (100 mg kg '); chloroform (50
mg kg '); 1,4-dioxane (100 mg kg™'); ethylene
oxide (10 mg kg™'); methylene chloride (100 mg
kg™') and trichloroethylene (100 mg kg™ ') based
upon toxicological considerations concerning a pro-
jected dose in ug day ' for 1 g ingested [13]. The
potential applicability of these standards was to 490
drug substances and 267 excipients while the choice
of which of the three methods to be used was
deferred to the monograph on each substance [14].

In the light of work by Foust and Bergren [15], the
special column was replaced by a combination of a
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deactivated retention gap and a widebore capillary
column (5% phenyl-95% dimethyl polysiloxane) for
the final incorporation of these methods into the
United States Pharmacopeia [16]. At the same time,
a method for methylene chloride in coated tablets
was also introduced which employed equilibrium
headspace sampling above 5% (w/v) aqueous solu-
tions of the tablet with subsequent analysis on a
polyethylene glycol column. Almost immediately, a
general method (Method IV) based upon SHS was
added [17].

To address problems of identification which arise
from the co-elution of a number of common solvents
such as acetonitrile and acetone, hexane and methyl
ethyl ketone, and cyclohexane and benzene on the
5% phenyl-95% dimethyl polysiloxane column
specified for Method I, Cyr et al. [18] suggested that
test results be confirmed on a poly(ethylene glycol)
(DB-Wax, J&W Scientific, Folsom, CA, USA) col-
umn. Moreover, Foust and Bergren pointed out that
the use of water or methanol (recommended in some
monographs) in place of benzyl alcohol (which was
used in their initial work [15]) created injection
problems or interfered with the detection of some
solvents and, consequently, invalidated Method I as a
means of determining OVIs [16]. Subsequently,
Chen et al. [19] pointed out that the resolution
problems could also be remedied through the use of
a 6% cyanopropylphenyl-94% dimethyl polysilox-
ane column (DB-624, J&W Scientific). They also
recommended that test materials be dissolved in
either dimethylsulfoxide or water for analysis. An
additional method (Method V) was introduced to
allow for the use of this column [20]. The use of
dimethylsulfoxide was also recommended by work-
ers at the USP Drug Research and Testing Labora-
tory [21]. Recently, Clark et al. proposed the use of
dimethylacetamide in place of dimethylsulfoxide
because of improvements in purity and a lower
freezing point which was more compatible with
refrigerated storage of standards [22]. The choice of
columns and conditions has since been expanded
further as Method VI [23] which is constrained only
by the requirement for resolution in excess of 1
between components of the standard mixture and
reproducibility no worse than 15% relative standard
deviation (R.S.D.).

It was subsequently proposed that the dynamic
headspace methods be dropped because they were

seldom employed for OVI analysis [24] and as a
consequence they do not appear in the most recent
revision of the USP [25] although the other methods
were not renumbered to reflect this change. Also, the
static headspace procedure was modified to include
the use of automated sampling systems.

3. Static headspace methods

The introduction of an automated equilibrium
headspace method as an official USP method was
championed by Dennis et al. [26] who separated 33
commonly used solvents on a DB-624 column (30
mXx0.32 mm I.D., 1.8 um film thickness). Drug
samples were dissolved to the extent of 2% (w/v) in
water [or 0.1 M HCI or 0.1 M (NH,),CO,], then 5
m] of the solution was placed in a 22-ml headspace
vial which contained 1 g of Na,SO, to enhance the
partitioning of polar volatiles into the vapor. The vial
was sealed and incubated at 85°C for 60 min after
which a 2-ml aliquot of the headspace was injected
at a 35:1 split ratio onto the column. Co-elution only
occurred between the following pairs: benzene,
isobutanol and cyclohexane, methylene chloride.
They pointed out that at the 2% level of dissolved
drug with the added salt, there was no significant
matrix effect on the distribution ratio of the OVIs in
keeping with a report by earlier investigators [27].
This permits the use of external standards. Head-
space sampling is substantially more robust than
direct injection since less of the dissolution medium
is introduced onto the column which consequently
can last for years rather than months as is usual when
direct injection is employed. In order to readily
achieve acceptable reproducibility with a headspace
system, the use of automated sampling devices in
contrast to manual injection is recommended. It is
important to note that, unless the residual solvents
are simply adsorbed to the surface of the drug,
dissolution is necessary in order to access the OVIs
which are occluded within the crystals.

Kidd [28] evaluated the method of Dennis et al.
[26] and found that while it performed in a satisfac-
tory manner for drugs dissolved in dilute acid or
water, the recoveries of the test analytes from
ammonium carbonate buffer (pH 9) were in the
range of 66% to 75%. This failure was ascribed to
the generation of carbon dioxide during the incuba-
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tion interval and the author speculated that another
buffer system might improve recoveries. He also
pointed out that although the use of organic solvents
to dissolve the drug for headspace analysis was not
investigated, this approach might be useful if the
purity of the solvent was adequate.

Kolb [29] has addressed the critical issue of
calibration in the application of the equilibrium
headspace technique to pharmaceuticals. Multiple
headspace extraction consists of a series of extrac-
tions of the sample solution into a fixed headspace
coupled with chromatographic analysis of each draw.
Although this method accesses the total OVI content
of the sample and is, therefore, immune to matrix
effects, it requires multiple analyses and is impracti-
cal for routine use. Nevertheless, this method does
serve as a benchmark against which other approaches
can be evaluated during method development.

Internal standards can be successfully applied if
they closely match the nature of analyte of interest
but this can be complicated if multi-component
mixtures are being analyzed. Standard additions is
generally the most suitable quantitative approach. In
special cases, levelling the matrix by the addition of
high levels of salt [26,27] can allow for the use of
external standards.

When the drug sample is poorly soluble and the
OVIs are largely adsorbed to the surface rather than
occluded in the crystalline matrix of the drug, OVIs
can be displaced from the surface of the drug using
an organic solvent. In this case, there is virtually no
matrix effect and external standards can be used.
This tactic can be employed by simply wetting the
surface of the finely ground drug, which increases
sensitivity.

Finally, a variety of relatively high boiling organic
solvents are mentioned as candidates for the analysis
of OVIs by equilibrium headspace analysis. These
include: 2-ethoxyethanol (b.p. 135°C); glycols (b.p.
about 200°C); dimethylacetamide (b.p. 166°C); di-
methylformamide (b.p. 153°C); benzyl alcohol (b.p.
205°C); glycerol (b.p. 182°C at 3.3 Pa); propylene
carbonate (b.p. 240°C) and acetic acid (b.p. 118°C).
Propylene carbonate is recommended by virtue of its
purity. We have used dimethylsulfoxide (b.p. 189°C)
successfully although we observe significant impuri-
ty peaks due to dimethylsulfide and dimethyldisul-
fide. Dimethylacetamide can contain significant
amounts of dimethylformamide as well.

Naughton [30] approached the problem of water-
insoluble drugs by dissolving 500-mg samples in 2
ml of dimethylformamide and subsequently added 1
ml of saturated aqueous sodium sulfate prior to
incubation at 85°C for 20 min with agitation. A
variety of OVIs including ethanol and acetone were
detected at the 1 mg kg ' level. De Smet et al. [31]
recently suggested the use of 1,3-dimethyl-2-im-
idazolidinone (b.p. 108°C at 2.9 Pa) and described a
method for the determination of OVIs in hydro-
phobic drugs at the 50 mg/kg to 2500 mg/kg level
in keeping with tolerances based upon toxicity. This
solvent allows dimethylformamide and dimethylacet-
amide to be evaluated by the equilibrium headspace
technique. Other examples of recent applications in
this area include the determination of ethanol, ace-
tone and diethyl ether in gonadotropin powders [32]
and the evaluation of several solvents in the anti-
biotics, cephalosporin and tetracycline [33].

4. Performance characteristics and some recent
applications of a SHS-GC-MS system

The particular system which we use for equilib-
rium headspace analysis is targeted at detection and
identification of OVIs at trace levels [34]. An
equilibrium headspace autosampler (Model 7000/
7050, Tekmar, Cincinnati, OH, USA) is configured
for use with 9-ml headspace vials and plumbed with
electroform nickel tubing for increased inertness.
Generally, a 0.25-ml sampling loop is employed. The
gas flow-rate is set to about 0.9 ml min~' (at 10°C)
in keeping with the requirements of the mass spec-
trometer.

Aliquots of the headspace are transferred to a
cryofocussing unit (Tekmar) which is maintained at
—130°C. After enough time has passed so that the
volume of the transfer line has been swept 2.5 times,
the cold trap is heated to 200°C (at 600°C min ') to
re-volatilize the sample.

Chromatography is conducted on a relatively thick
film, cross-linked trifluoropropylmethyl polysiloxane
capillary column (Rtx-200, 30 mx0.25 mm L.D., 1.0
am film, Restek, Bellefonte, PA, USA). This column
exhibits special selectivity for lone pair electrons
which increases the relative retention of oxygenates,
particularly ketones, with respect to the 6%
cyanopropylphenyl-94% dimethyl polysiloxane col-
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umn mentioned above. However, sub-ambient cool-
ing is needed to obtain adequate retention of early
eluting compounds such as methanol, diethyl ether
and ethanol. In general, the temperature is pro-
grammed as follows: 10°C (2 min) to 200°C (at 10°C
minfl).

The column is directly connected to a benchtop
mass spectrometer system (Model 5971A, Mass
Selective Detector, Hewlett-Packard, Palo Alto, CA,
USA). Typical scanning experiments for identifica-
tion are conducted using the following operating
parameters: range 20 amu to 250 amu at a repetition
rate of 2.9 Hz; the threshold is set at 150. A total-ion
chromatogram for a variety of solvents dissolved in
dimethylacetamide and analyzed using the SHS-GC-
MS system is presented as Fig. 1. While there are
some significant peak overlaps, these can be de-
convoluted using characteristics of the mass spec-
trum of each compound.

In a detailed study presented elsewhere [34],
calibration data was generated for a variety of
analytes dissolved in 0.5 ml of dimethylacetamide
and incubated at 105°C. Detection limits were esti-
mated by defining the noise as the measured width of
the baseline divided by the square root of 2 and
linearly extrapolating a low standard to a height
equivalent to 3 times the noise of the baseline. Under
these constraints, the limits of detection for selected
compounds are as follows: acetone (0.4 mg 1 ');
benzene (0.3 mg 1°'); chloroform (1.3 mg 17');
chlorobenzene (1.4 mg 17'); dioxane (1.2 mg 1™ ');
ethanol (2 mg 1™ '); methylene chloride (0.5 mg1~');
methyl ethyl ketone (0.5 mg 1™ '); n-octane (0.2 mg
1" and trichloroethylene (0.5 mg 17'). The im-
portant point is that at a factor of two times these
levels, mass spectra were obtained that could be
reliably matched to those in the Wiley Library of
Mass Spectra.

In contrast, when water served as the dissolution
medium with incubation at 85°C, non-polar analytes
were enriched in the headspace by up to a factor of
50 while polar analytes were depleted by up to a
factor of 4. When the analytes are known or for
specific screening, the use of selective ion moni-
toring increases the sensitivity of the method by
about two orders of magnitude.

Linearity was investigated using only selected ion
monitoring at the most abundant ion of the analyte
since it was anticipated that quantitative work would
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Fig. 1. Total ion current chromatogram of selected solvents
sampled from 1 ml of dimethylacetamide in a 9-ml vial at 105°C
using an equilibrium headspace autosampler with a 0.25-ml
sampling loop. They are separated on an Rtx-200 column (30
mx0.25 mm LD, 1.0 gm film) under a temperature program as
follows: 10°C (2 min) to 130°C at 10°C min ', detector off, and to
200°C at 20°C min~' to elute dimethylacetamide. Peaks identities
and concentrations are: (1) methanol 100 mg 17"; (2) pentane 11
mg 17'; (3) ethanol 110 mg 17'; (4) diethy! ether 14 mg 175 (%)
2—propanol 100 mg 17'; (6) dichloromethane, 28 mg 1™
2-methyl-2-propanol 89 mg 17'; (8) 2-methoxy-2-methyl propane
14 mg1~"; (9) t-propanot 97 mg 1™ '; (10) chloroform, 31 mg 17 ';
(11) carbon tetrachloride 54 mg 1~ "; (12) acetone 17 mg 17'; (13)
acetonitrile 54 mg 17'; (14) benzene 35 mg 17'; (15) tetrahydro-
furan 19 mg 1°'; (16) 1,2-dichloroethane 41 mg 17 an
trichloroethylene 55 mg 17'; (18) 1-butanol 220 mg 17 (19) ethyl
acetate 31 mg 17'; (20) 2-butanone 24 mg 17", (21) octane 12 mg
17'; (22) toluene 37 mg 17'; (23) 1,4-dioxane 45 mg 17" (24)
tetrachloroethylene 74 mg 17 '; (25) 3-pentanone 35 mg 1™ '; (26)
2-pentanone 35 mg 17'; (27) ethyl benzene 35 mg 17" and (28)
chlorobenzene 50 mg 17"

be conducted in this manner because of enhanced
sensitivity and improved data sampling rates. The
linearity exceeded four orders of magnitude for the
analytes mentioned above.

Raising the incubation temperature increases the
concentration of analytes in the headspace at a rate
of 3% to 4% (°C) '. However, higher temperatures
also introduce more of the dissolution solvent into
the column which can lead to pronounced distortion
of early eluting peaks. Water significantly interferes
with early-eluting hydrophilic analytes (e.g. metha-
nol, ethanol) on the Rtx-200 column and at trace
levels these compounds are determined more effec-
tively when the bulk drug is dissolved in dimethyl-
acetamide.
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A 6% cyanopropylphenyl-94% dimethyl poly-
siloxane column can be operated successfully at a
higher starting temperature (viz. 40°C) than the Rtx-
200 column mentioned above and a megabore capil-
lary column of this type (Rtx-1301, 30 mx0.53 mm
ID., 3.0 wm film, Restek) is installed in a second
system which consists of an HS-100 headspace
autosampler (Perkin Elmer, Norwalk, CT, USA)
mated to a Sigma 2000 gas chromatograph (Perkin
Elmer) with a flame ionization detector. Data acqui-
sition is accomplished through an A/D convertor
(Model 35900, Hewlett Packard) into ChemStation
(HP 3365) software for subsequent reduction. This
system is utilized for well characterized samples.

In a recent study, sulfamethazine was dissolved in
dimethylacetamide at 40% (w/v) with 2-pentanone
added as an internal standard to evaluate levels of
acetone using SHS-GC-MS with the mass spec-
trometer operated in single-ion mode [27]. Acetone
was detected at levels ranging from 0.2 mg kg™ ' to
20 mg kg ' in the pharmaceutical and this served as
an effective means of distinguishing between materi-
al derived from different sources. Product which
contained either 1.4 mg kg ' or 13 mg kg~' of
acetone was evaluated in duplicate with each group
of samples analyzed over a four month period on the
same instrument by the same analyst. For 1.4 mg
kg~ ', the within-day precision was 5% R.S.D. while
the between-day precision was 13% R.S.D.. For 13
mg kg~', the within-day precision was 3% R.S.D.
while the between-day precision was 6% R.S.D..

Ranitidine hydrochloride was dissolved in di-
methylsulfoxide at the 20% (w/v) level and evalu-
ated by equilibrium headspace sampling coupled to
GC-MS for identification. Then, it was dissolved in
water at the 50% (w/v) level for quantitative com-
parison using equilibrium headspace sampling cou-
pled to GC-FID. Product from one source was
distinguished from that obtained from another based
upon the OVIs: benzene, chloroform, methanol, 4-
methyl-2-propanone and 2-propanol. While 2-pro-
panol and methanol were present at concentrations
which exceeded 1000 mg kg~ l; the others, if present,
were evident at levels as low as 1 mg kg '.
Similarly, doxycycline hyclate from several different
manufacturers was dissolved in dimethylacetamide at
the 25% (w/v) level (or water at 37.5% (w/v)) and
differences in the following OVIs served to specify

the source: acetone; acetonitrile; ethanol; ethyl ace-
tate; methanol and methylene chloride.

5. Statistical methods for data analysis

The evaluation of results from analysis can be
relatively straightforward. If only one or two OVIs
are involved, this can require little more than signifi-
cance testing of the difference between the means of
two groups. It is important to note that consideration
also needs to be given to the lot-to-lot variability for
material which is produced by a single manufacturer.
The problem becomes more challenging when multi-
ple variables are involved.

A number of different chemometric approaches
have been used in this laboratory to interpret data
obtained from the determination of OVIs in pharma-
ceuticals. The references cited below are meant to
provide introductions to the various techniques.
Multivariate OVI data can be processed with at least
two goals in mind. The first is visualization and the
second is classification.

5.1. Visualization

While a set of data can be described mathematical-
ly with regard to central tendency (mean, median, or
mode), to dispersion (range or variance) and even to
degree of skewness, these statistics may not prove as
useful as a good picture [35]). An accurate graphical
representation not only shows the size and shape of
the data cluster for each class, but also the location
of each class relative to the others. It can give the
analyst an intuitive feel as to whether inter-group
separation is adequate for accurate classification.
Extracting this information from a table of sample
statistics would be difficult and possibly misleading.

5.1.1. Scatterplots

Two- and three-dimensional graphs, or scatter-
plots, can be used to view OVI data. Each sample is
treated as a point in the space defined by con-
centration axes of the analytes being considered. The
use of separate plotting symbols or colors for each
class of samples permits rapid examination of group
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separation. When the important differences between
classes can be described using only two or three
analyte variables, the scatterplot is the visualization
method of choice, owing to its simplicity.

3.1.2. Principal components analysis

In some circumstances more than three analyte
variables or axes are required to effect the separation
of all the classes in the data set. Unfortunately, it is
not possible to directly view a space with a di-
mensionality greater than three. However, principal
components analysis (PCA) can be employed to
reduce the effective dimensionality of the data
[36,37].

PCA capitalizes upon the fact that there are
generally correlations between variables which intro-
duce a certain amount of redundancy into a set of
multivariate data. For example, data described by
three variables may take the form of a 2-dimensional
plane of points embedded in 3-dimensional space.
Thus the points can be represented by two new
factors which are linear combinations of the original
three variables. The deviations (or residuals) of the
points from this 2-dimensional plane are the errors
incurred in this reduction of dimensionality. If the
points lie very close to the plane, then little in-
formation is lost.

The chief benefit to be derived using PCA, which
can justify some loss of information, is the ability to
visualize a data set with many variables via a more
compact representation. A parameter known as the
eigenvalue is associated with each new axis or
principal component extracted from the data set. It is
a measure of the amount of variance in a data set
explained by a given principal component. When
there are more than two or three significant eigen-
values found, the data set is not completely amenable
to visualization via PCA. Such a data structure is not
readily reduced to two or even three dimensions
without significant residuals or errors. Nevertheless,
the 2-dimensional plot of principal component 2 vs.
principal component 1 is the best possible repre-
sentation of the data set using only two axes. It must
be stressed that principal components are mathemati-
cal combinations of the original variables and not to
be confused with the real chemical components of
the system.

5.1.3. Spectral templates

The variables being used to visualize the data set
can be arranged consecutively, generating for each
sample a “‘spectrum’ of concentration values. Un-
like a traditional spectrum, however, the ordering of
variables is arbitrary. The spectra for all members of
a given class can be combined, producing a visuali-
zation of the entire class that shows not only the
overall spectral pattern of the class, but also the
distribution of values obtained for each analyte
measured. This class spectrum can be treated as a
template upon which the individual spectrum of an
unknown can be placed. If the unknown is a member
of the class in question, its value on each of the
spectral variables should lie within, or close to, the
ranges established for known members of the class.
To accommodate variables in the spectrum having
very different magnitudes, it may be necessary to
scale each variable independently. This is done by
dividing each sample’s value for a given variable by
a suitable constant, frequently the largest value of
that variable for all the samples analyzed.

Fig. 2 Fig. 3 show data from the analysis of a
bulk pharmaceutical powder from two different
manufacturers. (The identity of the product and the
manufacturers is confidential). The spectra are ex-
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Fig. 2. Plot of scaled concentration values for seven different
impurities in a bulk pharmaceutical from one manufacturer. Each
short horizontal line corresponds to a scaled concentration value.
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Fig. 3. Plot of scaled concentration values for seven different
impurities in a bulk pharmaceutical from a manufacturer other
than that in Fig. 2. Each short horizontal line corresponds to a
scaled concentration value.

pressed in terms of 7 analyte concentrations, with
approximately 40 samples (manufacturing lots) from
each manufacturer. Each short horizontal line repre-
sents the scaled sample concentration value for a
select analyte. Clearly there are significant differ-
ences between the two classes, particularly with
respect to variables 3, 4 and 5 where the analyte is
present in one manufacturer’s product and essentially
absent in the other’s. Variables | and 6 show minimal
response on either figure, but were significant for
certain other manufacturers whose plots are not
shown. The diagrams can be expanded further by
connecting values in each category which are ob-
tained from the same lot of material. This may be
useful but it complicates the picture. The indepen-
dence of the values in each analyte class can be
assessed by correlation tests.

5.2, Classification

The second goal of data treatment is the assign-
ment of unknown samples to correct classes. The
class structure may be dichotomous (authentic vs.
counterfeit) or polychotomous (manufacturer A, B,
C, etc.). A number of classification approaches will

be described below. Generally, the relationship be-
tween impurity profile and class membership is
established using a training set consisting of samples
with known identities. Regardless of the classifica-
tion method employed, it is critical that results be
subjected to validation with a suitable test set. The
test set consists of samples with known class iden-
tities which are treated as though their class member-
ships were unknown. The accuracy of the chosen
classification method can thus be assessed. It is
important that members of the test set are distinct
from the training set. The use of training set results
to evaluate classification accuracy yields a false
sense of confidence in the method being used [38].

5.2.1. Univariate statistics

Occasionally a single chemical component is
adequate for differentiating between groups of sam-
ples, in which case a traditional statistical approach
is called for [39]. Typically this involves parametric
tests such as Student’s ?-test but non-parametric
methods can be used also. A univariate classification
system is desirable because of its simplicity; how-
ever, it is unlikely that a single variable will produce
non-overlapped clusters for more than a few different
classes of samples.

5.2.2. Linear discriminant analysis

PCA maximizes the amount of information re-
tained while reducing dimensionality for easier vis-
ualization. It treats the data globally, without regard
to class membership (such as the identity of the
manufacturer). Discriminant analysis [40,41] also
finds new axes for representing the multivariate data
set. However, discriminant analysis serves not to
maximize retained information, but to maximize
instead the separation between the groups in the data.
It therefore utilizes knowledge of group membership
in finding new axes which are again linear combina-
tions of the original variables. Discriminant analysis
enhances group separation relative to PCA. Because
plots can be generated showing the location of
samples in a discriminant space defined by the new
axes, discriminant analysis serves not only as a
classification method but as a visualization tool as
well. Like PCA, it sacrifices ease of interpretability
because the axes are mathematical constructs and not
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the actual analyte concentrations employed in simple
scatterplots.

Unknowns are assigned to classes based upon their
distance in discriminant space from the means
(centroids) of each manufacturer’s cluster. In order to
evaluate the usefulness of such a technique in
classifying new samples, it must be validated by
withholding a certain percentage of the samples as a
test set, treating them as unknowns, and noting
whether they are assigned correctly.

5.2.3. Soft independent modeling of class analogy

Soft independent modeling of class analogy
(SIMCA) is a more sophisticated classification ap-
proach which is based upon, but goes beyond, PCA
{42,43]. In SIMCA, a separate principal components
mode] is generated for each class of samples. Diag-
nostic tools are used to find the optimal number of
factors to retain and to detect class members which
may be outliers. Unknowns are classified with regard
to how well they fit the model for each class and
membership probabilities can be obtained. SIMCA
does not force unknowns into a class: non-member-
ship in all classes is a possibility.

5.24. k-nearest neighbors

A multivariate classification approach which is
appealing because of both its simplicity and its
effectiveness is the k-nearest neighbors method
(kNN). The basic premise behind this technique is
that the identity of an unknown sample can be
obtained by examining the identities of its k-nearest
neighbor samples [44].

The data set generally consists of a set of samples
of known class membership, each measured with
regard to n variables. These variables may be the
concentrations of a volatile components determined
in the set. Thus, an n-component vector of con-
centrations exists for each sample. The euclidean
distance from an unknown sample’s vector to that of
each of the knowns is calculated in »-dimensional
space. The k-closest known samples are examined,
where k is typically a small integer such as 3. If the
majority of these & neighbors belong to a particular
class, the unknown is assigned to that class as well.
In a sense, the algorithm is examining the point
density for each known class at the site of the
unknown sample.

Despite its simplicity kNN is a powerful classifica-
tion tool, but its non-parametric nature does not
allow assessment of the degree of confidence in a
given classification. Generally, its overall perform-
ance is evaluated by cycling through the set of
knowns, treating each consecutively as an unknown,
and observing the percentage of correct class assign-
ments.

5.2.5. Artificial neural networks

The artificial neural network (ANN) is a relative
newcomer to multivariate classification. A large
variety of networks have been developed to solve
problems of classification, optimization, prediction,
etc. [45,46]. The method is named because its
assembly of interconnected processing units bears
resemblance both in form and function to a simple
biological nervous system. These processing units, or
neurodes, which are mathematical rather than phys-
ical, treat incoming signals according to specified
operations and thereby pass along an output signal.
These neurodes are interconnected through weights
which change their value as the system learns. The
back propagation network has been the one most
utilized in chemical pattern recognition.

Learning consists of providing the network with
the input pattern (here, analyte concentrations) and
corresponding class membership for known samples
in the training set. The network adjusts its con-
nection weights slightly after each iteration, learning
gradually to produce the expected class membership
when given the pattern of analyte concentrations.
When training is complete, and this may entail
thousands of passes through the training set, system
performance is evaluated by consecutively inputting
the known samples in the test set. The trained
network produces a class membership for each input
pattern and the accuracy of these assignments can be
determined. If performance is satisfactory, the
trained network is given unknowns to classity.

The chief advantage of the artificial neural net-
work is its ability to successfully separate classes
where linear classification methods fail. The effec-
tive boundary between classes need not be a line,
plane, or hyperplane but may assume as complex a
shape as necessary. However, training time can be
lengthy and the network does not converge to exactly
the same solution each time it is trained. The
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interpretability issue which is a minor problem with
linear discriminant analysis is more of a concern
here: it is frequently difficult to interpret the role of
each original analyte concentration in the separation
scheme.

6. Conclusion

In conclusion, the object of the foregoing discus-
sion has been to emphasize the important role that
the analysis of organic volatile impurities can play in
the detection of the unapproved manufacture and
distribution of pharmaceuticals. Among a variety of
formally endorsed methods, automated equilibrium
headspace sampling with capillary gas chromatog-
raphy offers a robust and reliable approach to the
analysis of OVIs when adequate attention is paid to
issues of calibration. Conjoining the technique with a
mass spectrometer gives an added dimension of
qualitative power which is important in a forensic
setting. Finally, special statistical techniques such as
those which are discussed above are often required
for decision making when a variety of OVIs (or any
impurities for that matter) are present.
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